

docker-sync

Run your application at full speed while syncing your code for development, finally empowering you to utilize docker for development under OSX/Windows/Linux*

Introduction

Developing with docker [https://www.docker.com/] under OSX/ Windows is a huge pain, since sharing your code into containers will slow down the code-execution about 60 times (depends on the solution). Testing and working with a lot of the alternatives made us pick the best of those for each platform, and combine this in one single tool: docker-sync.

	For OSX, see OSX.

	For Windows, see Windows.

	For Linux, see Linux.

	See the list of alternatives at Alternatives

Features

	Support for OSX, Windows, Linux and FreeBSD

	Runs on Docker for Mac, Docker for Windows and Docker Toolbox

	Uses either native_osx, unison or rsync as possible strategies. The container performance is not influenced at all, see Performance

	Very efficient due to the native_osx in depth

	Without any dependencies on OSX when using (native_osx)

	Backgrounds as a daemon

	Supports multiple sync-end points and multiple projects at the same time

	Supports user-remapping on sync to avoid permission problems on the container

	Can be used with your docker-compose way or the integrated docker-compose way to start the stack and sync at the same time with one command

	Using overlays to keep your production docker-compose.yml untouched and portable. See docker-compose.yml.

	Supports Linux* to use the same toolchain across all platforms, but maps on a native mount in linux (no sync)

	Besides performance being the first priority for docker-sync, the second is, not forcing you into using a specific docker solution. Use docker-for-mac, docker toolbox, VirtualBox, VMware Fusion or Parallels, xhyve or whatever!

Installation

No matter if its OSX/Linux/Windows

gem install docker-sync

Depending on the OS, you might need more steps to setup. Continue reading below.

Installation as non-root

You may elect to install docker-sync as a non-root user. To install as the current user:

gem install --user-install docker-sync

Then set-up your shell to add the docker-sync command to the PATH. Edit .bashrc:

if which ruby >/dev/null && which gem >/dev/null; then
 PATH="$(ruby -r rubygems -e 'puts Gem.user_dir')/bin:$PATH"
fi

… then start a new shell and run docker-sync.

OSX

Dependencies

Docker4Mac
If you use Docker4Mac, you can use the native_osx synching strategy and don’t have any host dependencies.

docker-machine
If you’re using docker-machine, you need to pick one of the other sync strategies [https://docker-sync.readthedocs.io/en/latest/advanced/sync-strategies.html], because the native_osx strategy doesn’t work [https://github.com/EugenMayer/docker-sync/issues/410#issuecomment-609855963] on docker-machine.

Advanced / optional

Optionally, if you do not want to use unison or want a better rsync or use unison (than the built-in OS X one)

if you use unison

brew install unison
brew install eugenmayer/dockersync/unox

if you use rsync

brew install rsync

Homebrew aka brew is a tool you need under OSX to install / easy compile other tools. You can use other tools/ways to install or compile fswatch, but those are out of scope for this docs. All we need is the binary in PATH.

Caution

Starting with docker-sync 0.7.0 if you’re using unison strategy, you can also install [an alternative](https://github.com/autozimu/unison-fsmonitor) to unox. It seems to be faster and more performant but it has not been fully battle-tested yet.

Linux

Caution

Linux support is still to be considered BETA - do not get too crazy if we have bugs!

Dependencies

Default sync strategy for linux (native) do not need any host dependencies.

Advanced / optional

Optionally, if you want to use unison, then you would need to install some more stuff.

The following instructions are written for Ubuntu; if you’re using another linux flavor, you might need to adjust some stuff like using a different package manager.

Using Unison Strategy

The Ubuntu package for unison doesn’t come with unison-fsmonitor, as such, we would need to build from source.

sudo apt-get install build-essential ocaml
wget https://github.com/bcpierce00/unison/archive/v2.51.3.tar.gz
tar xvf v2.51.3.tar.gz
cd unison-2.51.3
make UISTYLE=text
sudo cp src/unison /usr/local/bin/unison
sudo cp src/unison-fsmonitor /usr/local/bin/unison-fsmonitor

and that should be enough to get you up and running using unison.

Using rsync strategy

rsync strategy is not currently supported under linux, but it can be done. If you need this, please see #386, and send us some help.

Windows

Caution

Windows support is still to be considered BETA, - do not get too crazy if there are some bugs!

This guide provides detailed instructions on getting docker-sync running on Windows Subsystem for Linux.

As the time goes by these instructions may not be updated, so please also check out the repo’s issues if you have any ‘unknown’ problem that is not treated in this guide.

Still the procedure is pretty straightforward and should help set you up and running without too much hassle.

Benefits of Docker-sync on Windows

	Inotify works on containers that support it. No more polling!

	Performance might be a bit better or right on par with native Windows volumes. This needs more testing.

Possible Future Supported Environments

	Cygwin

	Native Windows (no posix)

My Setup (for reference)

Windows 10 Pro 1709

Pro version required for using Docker for Windows (Hyper-V), also update your system to the latest available version from MS

Docker for Windows CE 18.03.0-ce-rc3-win56 (16433) edge

(stable version should also work fine)

Let’s go!

1. Enable WSL
Open the Windows Control Panel, Programs and Features, click on the left on Turn Windows features on or off and check Windows Subsystem for Linux near the bottom.

2. Install a distro
Open the Microsoft Store and search for ‘linux’.

You will be then able to choose and install Debian, SUSE, openSUSE, Ubuntu, etc..

In this guide I am using Debian GNU/Linux. Direct link for Debian GNU/Linux

3. Launch and update
The distro you choose is now an ‘app’ on your system.

Open the start menu and launch it, then follow the on screen instructions in order to complete the installation.

When you have a fully working shell, update the system.

sudo apt update

sudo apt upgrade

4. Install Docker
Follow the official documentation for installing Docker on Linux: (the following is for Debian)

https://docs.docker.com/install/linux/docker-ce/debian/#install-docker-ce

Note that the Docker Server doesn’t work on the subsystem - we will then expose Docker for Windows to WSL later

with Windows 10 >= 1803 you can place a symlink to the Windows binary

sudo ln -s "/mnt/c/Program Files/Docker/Docker/resources/bin/docker.exe" /usr/local/bin/docker

	Install Docker Compose

sudo apt install docker-compose

Or if that does not work, follow the official documentation: https://docs.docker.com/compose/install/

with Windows 10 >= 1803 you can place a symlink to the Windows binary

sudo ln -s "/mnt/c/Program Files/Docker/Docker/resources/bin/docker-compose.exe" /usr/local/bin/docker-compose

	Install Ruby and Ruby-dev

sudo apt-get install ruby ruby-dev

	Install docker-sync

Install the gem

sudo gem install docker-sync

	Set your Docker for Windows host as an ENV variable

Open the Docker for Windows settings and check Expose daemon on tcp://localhost:2375 without TLS

Then type the following command in your WSL shell.

echo "export DOCKER_HOST=tcp://127.0.0.1:2375" >> ~/.bashrc

	Compile and install OCaml

Before doing this please check out first the eugenmayer/unison dockerfile and ensure that the OCaml version that you are going to install is the same. To find the required OCaml version, do a search for “ocaml” within the eugenmayer/unison’s dockerfile (https://github.com/EugenMayer/docker-image-unison/blob/master/Dockerfile)

Install build script

sudo apt-get install build-essential

As for now the procedure is as follows:

sudo apt-get install make
wget https://caml.inria.fr/pub/distrib/ocaml-4.12/ocaml-4.12.0.tar.gz
tar xvf ocaml-4.12.0.tar.gz
cd ocaml-4.12.0
./configure
make world
make opt
umask 022
sudo make install
sudo make clean

	Compile and install Unison

Look up the latest Unison release (https://github.com/bcpierce00/unison/releases), download the source code, compile and install.

As for now the procedure is as follows:

wget https://github.com/bcpierce00/unison/archive/v2.51.3.tar.gz
tar xvf v2.51.3.tar.gz
cd unison-2.51.3
needed for < Unison 2.51.4_rc2 with OCAML 4.12 - see https://github.com/bcpierce00/unison/pull/480
and https://github.com/Homebrew/homebrew-core/blob/HEAD/Formula/unison.rb#L13
curl https://github.com/bcpierce00/unison/commit/14b885316e0a4b41cb80fe3daef7950f88be5c8f.patch?full_index=1 -o patch.diff
git apply patch.diff
make UISTYLE=text
sudo cp src/unison /usr/local/bin/unison
sudo cp src/unison-fsmonitor /usr/local/bin/unison-fsmonitor

	Set Timezone if not done already

Check if /etc/localtime is a symlink. If not run dpkg-reconfigure tzdata and set your correct timezone.

	(bonus!) Bind custom mount points to fix Docker for Windows and WSL differences (thanks to @nickjanetakis)

You might encounter various strange problems with volumes while starting up Docker containers from WSL.

If so, as a workaround you have to set up a special mountpoint inside /etc/fstab and start your container from there.

sudo mkdir /c
sudo mount --bind /mnt/c /c
echo "sudo mount --bind /mnt/c /c" >> ~/.bashrc && source ~/.bashrc

In order to automatically mount the volume without asking any password you can add a rule into your sudoers file.

sudo visudo

Add the following at the bottom of the file, replacing “username” with your WSL username.

username ALL=(root) NOPASSWD: /bin/mount

with Windows 10 >= 1803 you can place a new file to /etc/wsl.conf instead

[automount]
root = /
options = "metadata"

	Laradock? No problem!

If, as an example, you are using Laradock, you just need to follow the official documentation changing the sync strategy to ‘unison’ and adding the docker-compose.sync.yml in your .env file.

...
COMPOSE_PATH_SEPARATOR=;
COMPOSE_FILE=docker-compose.yml:docker-compose.dev.yml:docker-compose.sync.yml
...
DOCKER_SYNC_STRATEGY=unison

Then you need to add the following ‘sync_args’ line in the laradock/docker-sync.yml file, as follows:

...
sync_strategy: '${DOCKER_SYNC_STRATEGY}' # for osx use 'native_osx', for windows use 'unison'

sync_args: ['-perms=0'] #required for two way sync ie generators, etc
...

This will allow proper synchronization between the Linux containers and your Windows host that manages permissions in a different way.

Now you can start syncing using sync.sh provided with Laradock.

./sync.sh up nginx mysql phpmyadmin

Done!

You should now have a working version of docker-sync via the Unison strategy.

In your home directory in WSL you can link your projects from Windows and run docker-sync or docker-sync-stack.

The rest of your workflow should be the same as before in either Command Prompt, PowerShell, or some other Windows terminal.

FYI - An example of a docker-sync.yml file

version: "2"
options:
 verbose: true
syncs:
 app-unison-sync: # tip: add -sync and you keep consistent names als a convention
 sync_args: ['-perms=0'] #required for two way sync ie generators, etc
 sync_strategy: 'unison'
 sync_host_ip: '127.0.0.1' #host ip isn't properly inferred
 sync_excludes: ['.gitignore', '.idea/*','.git/*', '*.coffee', '*.scss', '*.sass','*.log']
 src: './'

FreeBSD

Dependencies

Default sync strategy for FreeBSD is rsync, you need to install it first:

pkg install rsync

Using rsync

To setup an rsync resource you need a docker-sync.yml similar to:

version: "2"

syncs:
 code-sync:
 sync_strategy: "rsync"
 src: "path/to/src"
 sync_host_port: 10871
 # sync_host_allow: "..."

sync_host_port is mandatory and it must be unique for this shared resource.

You might need to specify sync_host_allow, this will let the rsync daemon know from which IP to expect connections from, network format (10.0.0.0/8) or an specific IP (10.2.2.2) is supported. The value depends on your virtualization solution and network stack defined (NAT vs host-only). A quick way to determine the value is to run docker-sync start and let it fail, the error will show you the needed IP value.

Using unison

unison could be supported on FreeBSD, but it wasn’t tested yet.

Using native_osx

This strategy is not supported, its OSX only.

Configuration

Caution

When you change anything in your docker-sync.yml be sure to run docker-sync clean and docker-sync start right after it. Just running docker-sync start or stop will not recreate the container and your changes will have no effect!

docker-sync.yml

The file docker-sync.yml should be placed in the top-level folder of your project, so docker-sync can find it. The configuration will be searched from the point you run docker-sync from, traversing up the path tree

In there, you usually configure one (or more) sync points. Be sure to decide which sync-strategy you want to chose, see Sync strategies.

Below are all the available options, simple examples can be found in the docker-sync-boilerplate [https://github.com/EugenMayer/docker-sync-boilerplate].

Important

Be sure to use a sync-name which is unique, since it will be a container name. Do not use your app name, but rather app-sync.

Simple configuration file

This is the simplest version for a configuration.

version: "2"
syncs:
 appcode-native-osx-sync:
 src: './app'

Synchronization options

Configuration options for a synchronzation definition below the top-level syncs.

version: "2"
syncs:
 appcode-native-osx-sync:
 src: './app'
 sync_excludes: ['ignored_folder', '.ignored_dot_folder']

src*

	Type:

	mandatory

Which folder to watch / sync from - you can use tilde ~, it will get expanded.

The contents of this directory will be synchronized to the Docker volume
with the name of this sync entry (appcode-native-osx-sync here).

Be aware that the trailing slash makes a difference.
If you add them, only the inner parts of the folder gets synced,
otherwise the parent folder will be synced as top-level folder.

	Options

	Description

	Path

	Your path to the source you want to sync to the container

sync_host_port*

	Type:

	mandatory if rsync

Should be a unique port this sync instance uses on the host to offer
the rsync service on (do not use this for unison - not needed there.)

	default:

	No default value

	Options

	Description

	Any number

	The port to use (make sure it is unused!)

sync_strategy

	Type:

	optional

Operating system aware sync strategy.

Remove this option to use the default strategy per OS.

See Sync strategies.

	default:

	
	native_osx under MacOS (except with docker-machine which use unison),

	native_linux docker volume under linux

	Options

	Description

	empty

	Dynamic detection, depends on the OS.

	native_osx

	Native docker-for-mac OSFS based sync (OSX only)

	unison

	Unison based sync (Linux, OSX, Windows)

	rsync

	Rsync based sync (OSX only)

	native_linux

	No sync, native mount (Linux only)

sync_userid

	Type:

	optional

Usually if you map users you want to set the user id of your
application container here.

This does not user groupmap but rather configures the server to map.

	default:

	empty

	Options

	Description

	Any number

	The userid you want to map to

sync_groupid

	Type:

	optional

Usually if you map groups you want to set the group id of your application
container here.

This does not user groupmap but rather configures the server to map.
This is only available for unison/rsync, not for d4m/native (default) strategies.

	default:

	empty

	Options

	Description

	Any number

	The groupid you want to map to

sync_args

	Type:

	optional

Use this to switch to rsync verbose mode

	default:

	empty

	Options

	Description

	String

	Any option accepted by rsync, e.g. -v or -L.

sync_excludes

	Type:

	optional

A list of excludes. These patterns will not be synced.

See
http://www.cis.upenn.edu/~bcpierce/unison/download/releases/stable/unison-manual.html#ignore
for the possible syntax and see sync_excludes_type below.

	default:

	empty

	Options

	Description

	empty

	do not exclude anything

	Array of strings

	Array of file and directory names to exclude from sync

Example:

sync_excludes: ['Gemfile.lock', 'Gemfile', 'config.rb', '.sass-cache', 'sass', 'sass-cache', 'composer.json' , 'bower.json', 'package.json', 'Gruntfile*', 'bower_components', 'node_modules', '.gitignore', '.git', '*.coffee', '*.scss', '*.sass']

List example:

sync_excludes:
 - 'Gemfile.lock'
 - 'Gemfile'
 - 'config.rb'
 - '.sass-cache'

sync_excludes_type

	Type:

	optional

Use this to change the sync_exclude syntax.

For more information see
http://www.cis.upenn.edu/~bcpierce/unison/download/releases/stable/unison-manual.html#pathspec

	default:

	Name

possible values:

	Options

	Description

	Name

	If a file or a folder does match this string (solves nesting problem)

	Path

	You match the exact path (nesting problem)

	Regex

	Define a regular expression

	none

	You can define a type for each sync exclude ['Name .git', 'Path Gemlock']

sync_host_ip

	Type:

	optional

When a port of a container is exposed, on which IP does it get exposed.
Localhost for docker for mac, something else for docker-machine.

	default:

	auto

	Options

	Description

	auto

	docker-machine/docker host ip will be detected automatically.

	IP address

	If you set this to a concrete IP, this OP will be enforced

sync_prefe

	Type:

	optional

Defines how sync conflicts should be handled.

	default:

	default

	Options

	Description

	default

	It will prefer the source

	copyonconflict

	On conflict, pick the one from the host and copy the conflicted file for backup

watch_args

	Type:

	optional

Use this to switch to fswatch verbose mode

	default:

	Empty

	Options

	Description

	String

	Every fswatch option like -v

watch_excludes

	Type:

	optional

A list of regular expressions to exclude from the fswatch - see fswatch docs
for details.

IMPORTANT: this is not supported by native_osx.

	default:

	empty

	Options

	Description

	Array of globs

	directory and file names, * are supported

Example:

watch_excludes: ['.*/.git', '.*/node_modules', '.gitignore']

host_disk_mount_mode

	Type:

	optional

See https://docs.docker.com/docker-for-mac/osxfs-caching/#cached

	Options

	Description

	default

	

	cached

	

	consistent

	

	delegated

	

monit_enable

	Type:

	optional

Monit can be used to monitor the health of unison in the native_osx strategy
and can restart unison if it detects a problem.

	default:

	false

	Options

	Description

	false

	

	true

	Enable monit

monit_high_cpu_cycles

	Type:

	optional

Use this to change how many consecutive times high cpu usage must be observed
before unison is restarted.

	default:

	2

	Options

	Description

	2

	Wait for 2 cycles

	<any integer>

	

monit_interval

	Type:

	optional

Use this to change how many seconds between each monit check (cycle).

	default:

	none

	Options

	Description

	none

	

	<any integer>

	Number in seconds

notify_terminal

	Type:

	optional

Enable terminal_notifier.
On every sync sends a Terminal Notification regarding files being synced.
(Mac Only).

Good thing in case you are developing and want to know exactly when your
changes took effect.
Be aware in case of unison this only gives you a notification on the initial sync,
not the syncs after changes.

	default:

	false

	Options

	Description

	false

	

	true

	Show notifications

Advanced options

Configuration options below the top-level options key. All advanced options are optional and have default values.

version: "2"
options:
 verbose: true

cli_mode

Defines how the sync will be invoked on the command line.
Mostly depending if your are using docker-sync solo,
scaffolded or in development (thor).

	default:

	auto

	Options

	Description

	auto

	try to guess automatically

	docker-sync

	

	thor

	

compose-file-path

If you like, you can set a custom location (path) of your compose file like
~/app/compose.yml.

You can also use this as an array to define several compose files to include.
Order is important!

	default:

	docker-compose.yml

	Options

	Description

	docker-compose.yml

	The default docker-compose.yml file

	A single file name

	Alternative docker-compose file

	An array of file names

	A list of docker-compose files, loaded in order

compose-dev-file-path

If you like, you can set a custom location (path) of your compose file.
Do not set it, if you do not want to use it at all.

If its there, it gets used. If you name it explicitly, it HAS to exist.

HINT: you can also use this as an array to define several compose files to include.
Order is important!

	default:

	docker-compose-dev.yml

	Options

	Description

	docker-compose-dev.yml

	The default docker-compose-dev.yml file

	A single file name

	Alternative docker-compose file

	An array of file names

	A list of docker-compose files, loaded in order

max_attempt

Maximum number of attempts for unison waiting for the success exit status.

Each attempt means 1-second sleep.
Only used in unison.

	default:

	5

project_root

Root directory to be used when transforming sync src into absolute path.

	default:

	pwd

	Options

	Description

	pwd

	Current working directory

	config_path

	The directory where docker-sync.yml is found

<sync_strategy>_image

The image to use for the rsync container.

Do not change this until you exactly know, what you are doing

Replace <sync_strategy> with either rsync, unison, native_osx
to set a custom image for all sync of this type.

verbose

Activate this if you need to debug something.

IMPORTANT: do not run stable with this, it creates a memory leak.
Turn off verbose when you are done testin

	default:

	false

	Options

	Description

	false

	

	true

	Output everything

docker-compose.yml

You should split your docker-compose configuration for production and development (as usual). The production stack (docker-compose.yml) does not need any changes and would look like this (and is portable, no docker-sync adjustments).

version: "2"
services:
 someapp:
 image: alpine
 container_name: 'fullexample_app'
 command: ['watch', '-n1', 'cat /var/www/somefile.txt']
 otherapp:
 image: alpine
 container_name: 'simpleexample_app'
 command: ['watch', '-n1', 'cat /app/code/somefile.txt']

docker-compose-dev.yml

The docker-compose-dev.yml (it needs to be called that way, look like this) will override this and looks like this.

version: "2"
services:
 someapp:
 volumes:
 - fullexample-sync:/var/www:nocopy # nocopy is important
 otherapp:
 # thats the important thing
 volumes:
 - simpleexample-sync:/app/code:nocopy # nocopy is important

volumes:
 fullexample-sync:
 external: true
 simpleexample-sync:
 external: true

Tip

Do check that you use nocopy, see below for the explanation

So the docker-compose-dev.yml includes the volume mounts and definitions - your production docker-compose.yml will be overlaid by this when starting the stack with

docker-sync-stack start

This effectively does this in docker-compose terms

docker-compose -f docker-compose.yml -f docker-compose-dev.yml up

Portable docker-compose.yml

Most of you do not want to inject docker-sync specific things into the production docker-compose.yml to keep it portable. There is a good way to achieve this very cleanly based on docker-compose overrides.

	Create a docker-compose.yml (you might already have that one) - that is your production file. Do not change anything here, just keep it the way you would run your production environment.

	Create a docker-compose-dev.yml - this is where you put your overrides into. You will add the external volume and the mount here, also adding other development ENV variables you might need anyway

Start your compose using:

docker-compose -f docker-compose.yml -f docker-compose-dev.yml up

If you only have macOS- and Linux-based development environments, create docker-compose-Linux.yml and docker-compose-Darwin.yml to put your OS-specific overrides into. Then you may start up your dev environment as:

docker-compose -f docker-compose.yml -f docker-compose-$(uname -s).yml up

You can simplify this command by creating an appropriate shell alias [https://en.wikipedia.org/wiki/Alias_(command)] or a Makefile [https://en.wikipedia.org/wiki/Makefile]. There is also a feature undergo [https://github.com/EugenMayer/docker-sync/issues/41] to let docker-sync-stack support this out of the box, by simply calling:

docker-sync-stack start

A good example for this is a part of the boilerplate project [https://github.com/EugenMayer/docker-sync-boilerplate].

Why :nocopy is important?

In case the folder we mount to has been declared as a VOLUME during image build, its content will be merged with the name volume we mount from the host - and thats not what we want. So with nocopy we ignore the contents which have been on the initial volume / image and do enforce the content from our host on the initial wiring

version: "2"
services:
 someapp:
 volumes:
 - fullexample-sync:/var/www

to

version: "2"
services:
 someapp:
 volumes:
 - fullexample-sync:/var/www:nocopy

Environment variables support

Docker-sync supports the use of environment variables from version 0.2.0.

The support is added via implementation of https://github.com/bkeepers/dotenv.

You can set your environment variables by creating a .env file at the root of your project (or form where you will be running the docker-sync commands).

The environment variables work the same as they do with docker-compose.

This allows for simplifying your setup, as you are now able to change the project dependent values instead of modifying yaml files for each project.

Tip

You can change the default file using DOCKER_SYNC_ENV_FILE, e.g. if .env is already used for something else, you could use .docker-sync-env by setting export DOCKER_SYNC_ENV_FILE=.docker-sync-env

contents of your .env file
WEB_ROOT=/Users/me/Development/web
API_ROOT=./dir

The environment variables will be picked up by docker-compose

services:
 api:
 build: ${API_ROOT}

and by docker-sync as well.

WEB_ROOT is /Users/me/Development/web
syncs:
 web-rsync:
 src: "${WEB_ROOT}"

For a detailed example take a look at https://github.com/EugenMayer/docker-sync-boilerplate/tree/master/dynamic-configuration-dotnev.

Commands

Sync commands (docker-sync)

Generally you can just list all the help in the cli by:

docker-sync help

Start

docker-sync start

Tip

See Sync stack commands (docker-sync-stack) on how docker-sync-stack start works to start sync / compose at the same time.

This creates and starts the sync containers, watchers and the sync itself. It blocks your shell and you should leave it running in the background. When you are done, just press CTRL-C and the containers will be stopped (not removed).

Running start the second time will be a lot faster, since containers and volumes are reused.

Tip

You can use -n <sync-endpoint-name> to only start one of your configured sync-endpoints.

Restart

docker-sync restart

This restarts docker-sync daemon, so this is the same as docker-sync stop && docker-sync start. You can use the same options as docker-sync start command.

Sync

docker-sync sync

This forces docker-sync to sync the host files to the sync-containers. You must have the containers running already (docker-sync start). Use this as a manual trigger, if either the change-watcher failed or you try something special / an integration

Tip

You can use -n <sync-endpoint-name> to only sync one of your configured sync-endpoints.

List

docker-sync list

List all available/configured sync-endpoints configured for the current project.

Clean

After you are done and want to free up space or switch to a different project, you might want to release the sync containers and volumes by

docker-sync clean

This will not delete anything on your host source code folders or similar, it just removes the container for sync and its volumes. It does not touch your application stack.

Sync stack commands (docker-sync-stack)

With docker-sync there comes docker-sync-stack (from 0.0.10). Using this, you can start the sync service and docker compose with one single command. This is based on the gem docker-compose [https://github.com/xeger/docker-compose].

Start

docker-sync-stack start

This will first start the sync service like docker-sync start and then start your compose stack like docker-compose up.

You do not need to run docker-sync start beforehand!

This is very convenient so you only need one shell, one command to start working and CTRL-C to stop.

Clean

docker-sync-stack clean

This cleans the sync-service like docker-sync clean and also removed the application stack like docker-compose down.

Daemon mode

Docker-sync in daemon mode

Beginning with version 0.4.0 Daemon mode is now the default, just use docker-sync start. docker-sync-daemon is deprecated.

Beginning with version 0.2.0, docker-sync has the ability to run in a daemonized (background) mode.

In general you now run docker-sync-daemon to start in daemonized mode, type docker-sync-daemon <enter> to see all options

Start

The docker-sync-daemon start command has the following options to help configure daemon mode:

	--app_name (--name), The name to use in the filename for the pid and output files (default: ‘daemon’)

	--dir, The directory to place the pid and output files (default: ‘./.docker-sync’)

	--logd, Whether or not to log the output (default: true)

Stop

The docker-sync-daemon stop command is available to stop the background process. It also takes the --app_name and --dir arguments.

Log

The docker-sync-daemon logs command is a handy shortcut to tail the logs from the daemonized process, in addition to the --app_name and --dir from above, it takes the following arguments:

	--lines, Specify the maximum number of lines to print from the current end of the log file (defaults to 100)

	--follow (-f), Whether or not to continue following the log (press ctrl+c to stop following)

Examples

Instead of docker-sync-stack start

The way docker-sync-stack start used to operate was to begin to sync the container(s) specified in the docker-sync.yml file, and then begin a docker-compose up. The simplest way to replace this command is to use:

docker-sync-daemon start
docker-compose up

This will start your sync in the background, and then start all services defined in your docker-compose file in the foreground. This means that your sync continues in the background, even if you exit your docker-compose session(s). You can then stop that background sync with:

docker-sync-daemon stop

This will show the logs for the daemon started above

docker-sync-daemon logs

Running commands before starting the docker-compose services

By having the sync run in the background, you can then use a single shell session to ensure that the sync is running, and then run a few commands before starting all your services. You may wish to do this if you would like to use volumes to speed up rebuilds for node modules or gem bundles - as volumes are not available while building the image, but are when building the container.

docker-sync-daemon start
docker-compose run --rm $service yarn install
docker-compose up -d

This will ensure that your sync containers are up and available so that commands utilizing the docker-compose file don’t fail for not finding those containers. It will then run all services in the background.

Notes

New directory

This will now create a .docker-sync directory alongside wherever you invoke the command (if you’re asking it to run in the background). You will likely want to add this directory to your .gitignore file (or equivalent). You can, of course, use the --dir option to specify an alternate directory to save these files, but be sure to pass the same argument to stop, and to use it consistently, or you may end up with multiple sync’s running in the background…

Invoking with the –config option

I imagine most users will be invoking docker-sync without specifying an alternate path to the config file, but it’s worth mentioning that if that’s your current setup, you should also consider using the app_name option or the dir option to ensure that your pid file won’t conflict with other invocations of docker-sync - otherwise you’ll get a message saying that it’s already running.

Upgrade

0.4.2-0.4.5

Nothing special, just be sure to pull the newest docker-images for your strategy and do not leave any older version behind

0.4.1

	:nocopy needs to be added to all named-volume mounts, see Why :nocopy is important?

	if you want to use native_osx with docker-machine (toolbox) + virtualbox, it will not work https://github.com/EugenMayer/docker-sync/issues/346

The :nocopy issue has been there for a while, but nobody really recognized it.

0.4.0

Attention

Ensure you run docker-sync clean after the upgrade. Do not reuse the old containers!

The default strategy is now native_osx

Read more at native_osx (OSX).

Background by default

docker-sync start does now background by default, use --foreground to run in foreground.

sync_user now removed

Being deprecated in 0.2, it’s now throwing an error if still present

docker-sync-daemon is now deprecated

It’s deprecated and will be removed in 0.5

0.3.0

Reinstallation of unox

Due to a lot of issues and inconvenience with the installation of unox and the lack of versioning of unox, i took the step to create a homebrew formula myself, while working with the unox author hand in hand. This way we can ease up the installation and also be able to avoid issues as https://github.com/EugenMayer/docker-sync/issues/296 The installer will take care of everything for you in this regard

Scaffolding usages needs to be migrated

If you scaffolded / scripted with docker-sync using it as a ruby lib, you will now need to change your implementation due to the changes to preconditions and config. Important new/replacing calls are. Please see the updated example at Scripting for how to load the project config, how to get its path and how to call the preconditions

Dest has been removed

After making dest deprecated in the 0.2 release, since we introduce named volume mounts, it is now removed. Just remove it, the destination is set in the docker-compose-dev.yml file like this

version: "2"
services:
 someapp:
 volumes:
 - fullexample-sync:/var/www:rw # will be mounted on /var/www

So here, the destination will be /var/www

0.2.0+

Versioning of docker-sync.yml

From 0.2.0 you need to add a new setting to your docker-sync.yml version: "2" - this describes the project version you are using. This is needed so later we can easily detect old/incompatible configuration files and warn you to migrate those. This is now mandatory. See this change [https://github.com/EugenMayer/docker-sync-boilerplate/commit/9d2cd625282f968161e3ecf4ed85b5b52dbd8cbd] on the boilerplates / examples, which may explain it even better.

Unison exclude syntax is Name by default now - migrate your entries

Prior to 0.2.0 the exclude default syntax of the unison strategy was “Path” - since we decided that this is counter-intuitive in most cases, we have changed the default to Name - please see the unison documentation for more [http://www.cis.upenn.edu/~bcpierce/unison/download/releases/stable/unison-manual.html#ignore] - mostly you would have expected the Name behavior anyway, so you might want to stick with it. TLTR: Path math matches the exact path (not sub-directories) while name just matches string on the path - no matter which “nesting level”. You could go back to Path by setting sync_exclude_type [https://github.com/EugenMayer/docker-sync/blob/master/example/docker-sync.yml#L56] to ‘Path’.

See this issue: Make Name the default exclude_type in 0.2.0 [https://github.com/EugenMayer/docker-sync/issues/133].

rsync trailing slash changes

Prior to 0.2.0 the trailing slash was automatically added - but now you have to do this explicitly If you define an rsync sync, you most probably want to sync the inner folder into you destination, without creating the parent folder / syncing it. This trailing slash ./your-code/ ensures exactly that, so your-code will not be created on your destination, but anything inside it will be synced.

Default sync is now unison (from rsync to unison)

If you did not provide the sync_strategy setting prior 0.2.0 - rsync was used. Starting with 0.2.0 unison(dual sided) is the new default, so a 2 way sync. Beside its just being better, faster after the initial sync and also offers 2-way sync, it has a new Exclude-syntax. With 0.2.0 the Name exclude syntax is used, ensure you adjust your rsync ones to fit those.

See this issue: Migration Guide from rsync to unison as default [https://github.com/EugenMayer/docker-sync/issues/115].

volumes_from: container: syntax is no longer used

The volumes_from: container:app-sync:rw syntax is no longer used as a volume mount for the sync container, but rather volumes: app-sync:/var/www:rw

See this issue: Rework the way we mount the volume [https://github.com/EugenMayer/docker-sync/issues/116].

–prefer is now built in - remove it from sync_args

If you have used sync_args for unison and defined --prefer, please consider removing it. Without doing anything, docker-sync will now use --prefer <srcpath> --copyonconflict and also help you keep the src dynamic (depending on the developer).

The option sync_user no longer exists

sync_user has been removed, since it does not add any useful stuff, but spreads a lot of confusion. Please use sync_userid solely to define the user-mapping, no need to manually set the sync_user anymore.

Remove the old unison:unox image

Since the name was misleading anyway, please remove the old unison image: docker image rm eugenmayer/unison:unox.

The rsync / unison images have been remade and aligned

To share more code and features between the rsync / unison images, we aligned those images to share the same codebase, thus they have been renamed. The ENV variables have changed and some things you should not even notice, since it is all handled by docker-sync - all you need to know is, you need to pull the new versions if you have disabled the auto-pull (which you should not).

Sync strategies

The sync strategies depend on the OS, so not all strategies are available on all operating system

	OSX: native_osx, unison, rsync

	Windows: unison

	Linux: native_linux, unison

native_osx (OSX)

[image: DockerSync native_osx strategy overview]
For advanced understanding, please read native_osx in depth.

Native-OSX is a combination of two concepts, OSXFS only [https://github.com/EugenMayer/docker-sync/issues/346] and Unison together. We use OSX to sync the file-system into a sync-container to /host_sync. In that sync container we sync from /host_sync to /app_sync using Unison. /app_sync is exposed as a named volume mount and consumed in the app. You ask yourself, why? Its fairly simple.

By having this extra layer of unison on linux, we detach the actual write/read performance of your application from the actual OSXFS performance - running at native speed. Still, we using OSXFS, a about up to 1 second delayed, to synchronize changes both ways. So we have a 2-way sync.

What is different to plain Unison you might ask. The first big issue with Unison is, how bad it performs under OSX due to the bad FS-Events of OSX, implemented in macfsevents and alikes. It uses a lot of CPU for watching files, it can lose some events and miss a sync - but also, it adds extra dependencies on the OSX hosts.

All that is eliminated by native_osx - we use Unison in the Linux container, where it performs great due to inotify-event based watchers.

	Pros

	
	Far more reliable due to a low-level implementation of the sync using OSXFS only [https://github.com/EugenMayer/docker-sync/issues/346]

	Uses far less CPU to sync files from the host to the sync container - will handle a lot more files

	No daemon to run, control, restart and sync on the OSX host. Makes sleep/hibernate/reboot much more robust

	No dependencies on the OSX-Host at all

	A lot easier installation since we just need gem install docker-sync and that on runs under system ruby. Anything else is in containers

	It performs at native speed

	It will be much easier to support Windows this way

	Cons

	
	Initial start can take longer as on unison, since the first sync is more expensive. But this is one time only

	It works under Docker for Mac only - missing file system events under vbox/fusion. See native_osx does not work with docker-machine vbox / fusion [https://github.com/EugenMayer/docker-sync/issues/346]

unison (OSX/Windows/Linux)

This strategy has the biggest drive to become the new default player out of the current technologies. It seems to work very well with huge codebases too. It generally is build to handle 2 way sync, so syncs back changes from the container to the host.

	Pros

	
	Offers 2 way sync (please see unison-dualside why this is misleading here)

	Still very effective and works for huge projects

	Native speed in for the application

	Cons

	
	Can be unreliable with huge file counts (> 30.000) and bad hardware (events gets stuck)

	The daemon on OSX needs extra care for sleep/hibernate.

	Extra dependencies we need on OSX, in need to install unison and unox natively - brew dependencies

Initial startup delays with unison

On initial start, Unison sync needs to build a catalog of the files in the synced folder before sync begins. As a result, when syncing folders with large numbers of relatively large files (for example, 40k+ files occupying 4G of space) using unison, you may see a significant delay (even 20+ minutes) between the initial ok Starting unison message and the ok Synced message. This is not a bug. Performance in these situations can be improved by moving directories with a large number of files into a separate rsync strategy sync volume, and using unison only on directories where two-way sync is necessary.

rsync (OSX)

This strategy is probably the simplest one and probably the most robust one for now, while it has some limitations. rsync-syncs are known to be pretty fast, also working very efficient on huge codebases - no need to be scared of 20k files. rsync will easily rsync the changes (diff) very fast.

	Pros

	
	Fast re-syncing huge codebases - sync diffs (faster then unison? proof?)

	Well tested and known to be robust

	Best handling of user-permission handling (mapped into proper users in the app container)

	Cons

	
	Implements a one way sync only, means only changes of your codebase on the host are transferred to the app-container. Changes of the app-container are not synced back at all

	Deleting files on the host does yet not delete them on the container, since we do not use –delete, see #347 [https://github.com/EugenMayer/docker-sync/issues/37]

Example: On the docker-sync-boilerplate [https://github.com/EugenMayer/docker-sync-boilerplate/tree/master/rsync]

native_linux

Native linux is actually no real implementation, it just wraps docker-sync around the plain native docker mounts which do work perfectly on linux. So there are no sync-containers, no strategies or what so ever. This strategy is mainly used just to have the whole team use docker-sync, even on linux, to have the same interface. If you use default sync_strategy in the docker-sync.yml, under Linux, native_linux is picked automatically

Sync Flags or Options

You find the available options for each strategy in Configuration.

Scripting

We use docker-sync as a library in our own docker-stack startup script. It starts the docker-compose stack using a Ruby gem EugenMayer/docker-compose [https://github.com/EugenMayer/docker-compose] all this wrapped into a thor task. So:

	Start docker-sync

	Start a docker-compose stack based on some arguments like –dev and load the specific docker-compose files for that using xeger/docker-compose [https://github.com/xeger/docker-compose]

docker-sync-stack is actually an example already, just see here:

	You run the sync manager with run : https://github.com/EugenMayer/docker-sync/blob/master/tasks/stack/stack.thor#L37

	But you do not call .join_threads after that like her https://github.com/EugenMayer/docker-sync/blob/master/tasks/sync/sync.thor#L36

	Then you just continue doing what you want to script, in my case, i start a new blocking task - docker-compose. But you could do anything.

Simple scripting example

require 'docker-sync/sync_manager'
require 'docker-sync/dependencies'
require 'docker-sync/config/project_config'

load the project config
config = DockerSync::ProjectConfig.new(config_path: nil)
DockerSync::Dependencies.ensure_all!(config)
now start the sync
@sync_manager = Docker_sync::SyncManager.new(:config_path => config_path)
@sync_manager.run() # do not call .join_threads now

your stuff here
@sync_manager.watch_stop()
system('my-bash-script.sh')
some_ruby_logic()
system('other-tasks.sh')
@sync_manager.sync()
@sync_manager.watch_start()
debootsrapping
begin
 @sync_manager.join_threads
rescue SystemExit, Interrupt
 say_status 'shutdown', 'Shutting down...', :blue

 @sync_manager.stop
rescue Exception => e

 puts "EXCEPTION: #{e.inspect}"
 puts "MESSAGE: #{e.message}"

end

How it works

Architecture

On the host, a thor based ruby task is started, this starts:

	Every sync will start an own docker-container with a rsync/unison-daemon watching for connections.

	The data gets pre-synced on sync-start

	A fswatch cli-task gets setup, to run rsync/unison on each file-change in the source-folder you defined

Done. No magic. But its roadrunner fast! And it has no pre-conditions on your actual stack.

native_osx in depth

Under The Hood

First, take a look at this diagram:

[image: DockerSync native_osx strategy overview]
There are some important keypoints to notice here:

	We use OSXFS to mount your local host folder into the sync-container.

	We do not mount this in the app-container directly, since this would lead to infamously horrible performance [https://docs.docker.com/docker-for-mac/osxfs/#performance-issues-solutions-and-roadmap].

	Instead of directly mounting /host_sync in the app-container we setup a 2-way-sync inside the sync-container using Unison [http://www.cis.upenn.edu/~bcpierce/unison/]. This ensures that the actual READ/WRITE performance on the /app_sync folder is native-speed fast.

	This makes all operations on /app_sync be asynchronous with /host_sync, since writing and reading on /app_sync does not rely on any OSXFS operation directly, but shortly delayed and asynchronous.

	We mount /app_sync to your app_container - since this happens in hyperkit, it’s a Docker LINUX-based native mount, thus running at native-speed.

	Your application now runs like there was no sync at all.

FAQ

Why use OSXFS in the first place (instead of the unison strategy) to sync from the host to the sync-container

There are several reasons, one of the most important being the performance. Since MacOS/OSX has very bad filesystem events support on HFS/APFS, watching the file-system for changes using unox or fswatch was causing a heavy CPU load. This CPU load is very significant, even on modern high-end CPUs (like a i7 4770k / 3.5GHz).

The second issue was dependencies. With native_osx you do not need to install anything on your host OS except the docker-sync gem. So no need to compile unox or install unison manually, deploy with brew and fail along the way - just keeping you system clean.

Is this strategy absolutely bullet proof?

No, it is not. But it has been pretty battle proven already - the main issue is https://github.com/EugenMayer/docker-sync/issues/410 - so sometimes OSXFS just stops triggering FS events in Hyperkit, thus in the sync-container. This leads to an issue with our sync, since the unison daemon inside the app-sync container relies on those events to sync the changes (it does not have the ability to poll, which would be disastrous performance-wise, anyway).

Advanced Monitoring for native_osx

Background

Monit [https://mmonit.com/monit/] is a utility which can be used to monitor the health of the unison process which runs in the container for the native_osx strategy. If it detects that unison is unhealthy, Monit automatically restarts unison. This improves the stability of the native_osx container in cases where the unison process is misbehaving but does not necessarily crash. Currently, there is only one check for CPU usage implemented, but in the future more checks may be added, such as memory usage. It is currently turned off by default and can be turned on in the configuration:

https://github.com/EugenMayer/docker-sync/blob/master/example/docker-sync.yml#L120-L126

Monitoring CPU usage

One instance which unison has been seen to misbehave is when quickly creating and deleting a file while it is processing it. unison may hang, using a high amount of cpu time: https://github.com/EugenMayer/docker-sync/issues/497. monit detects this high cpu usage (>50%) and automatically restarts unison to recover it. By default this happens within 10 seconds, but the tolerance can be configured in case there are normal spikes in cpu usage during successful syncs.

Tips and tricks

HTTP Proxy and DNS

The HTTP Proxy and DNS used in dinghy [https://github.com/codekitchen/dinghy] is available as a standalone project dinghy-http-proxy [https://github.com/codekitchen/dinghy-http-proxy]. The proxy is based on jwilder’s excellent
nginx-proxy [https://github.com/jwilder/nginx-proxy] project, with modifications to make it more suitable for local development work. A DNS resolver is also added. By default it will resolve all *.docker domains to the Docker VM, but this can be changed.

SSH-Agent Forwarding

If you need to access some private git repos or ssh servers, it could be useful to use have a ssh-agent accessible from your containers. whilp/ssh-agent [https://github.com/whilp/ssh-agent] helps you to do so easily.

Running composer or other tools like if they were on the host

If you run composer and other tools directly in containers, you could use a combination of the autoenv [https://github.com/Tarrasch/zsh-autoenv] zsh plugin and a simple wrapper script to run it easily directly from the host. In your project folder, create a .autoenv.zsh file with the name of your container:

autostash COMPOSER_CONTAINER='project_fpm_1'

then create a simple function in your .zshrc:

composer () {
 if [! -z $COMPOSER_CONTAINER]; then
 docker exec -it ${COMPOSER_CONTAINER} /usr/local/bin/composer --working-dir=/src -vv "$@"
 else
 /usr/local/bin/composer "$@"
 fi
}

Ignore files in your IDE

It’s a good idea to add the temporary sync files to your IDE’s ignore list to prevent your IDE from indexing them all the time or showing up in search results. In case of unison and PHPStorm for example just go to Preferences -> File Types -> Ignore files and folders and add .unison to the pattern.

Don’t sync everything

You should only sync files that you really need on both the host and client side. You will see that the sync performance will improve drastically when you ignore unnecessary files. How and which files to ignore depends on your syncing strategy (rsync/unison/…) and your project.

Example for a PHP Symfony project using unison:

docker-sync.yml
syncs:
 appcode-unison-sync:
 ...
 sync_args:
 - "-ignore='Path .idea'" # no need to send PHPStorm config to container
 - "-ignore='Path .git'" # ignore the main .git repo
 - "-ignore='BelowPath .git'" # also ignore .git repos in subfolders such as in composer vendor dirs
 - "-ignore='Path var/cache/*'" # don't share the cache
 - "-ignore='Path var/sessions/*'" # we don't need the sessions locally
 - "-ignore='Path node_modules/*'" # remove this if you need code completion
 # - "-ignore='Path vendor/*'" # we could ignore the composer vendor folder, but then you won't have code completion in your IDE

Sync stopping

Npm / webpack / gulp based projects

Npm, webpack, gulp, and any other tooling that watches, deletes and/or creates a lot of files may cause sync to stop.

In most cases, this has nothing to do with docker-sync at all, but with OSXFS getting stuck in the FS event queue, which then also stops events for unison in our docker image (linux, so inode events) and thus breaks syncing.

	Run npm i, composer install, and the likes before docker-sync start. This way we avoid tracking unnecessary FS events prior to start.

	Sync only necessary folders, e.g. src/ folders. Restructure your project layout if needed.

Other reported solutions

	Run docker-sync stop && docker-sync start

	Run docker-sync stop && docker-sync clean && docker-sync start

	Manually going to the unison docker container and executing kill -1 [PID] on the unison process (suggested by @grigoryosifov [https://github.com/EugenMayer/docker-sync/issues/646#issuecomment-466991460])

	Sometimes, the OSXFS itself gets stuck. Docker for Mac restart maybe the only option. Sometimes, an OS restart is the only option.

Other common issues

Incorrect mount location

Docker-sync uses a named container/volume for synchronizing. There is a chance you may have a conflicting sync name. To verify this, run:

docker container inspect --format '{{(index .Mounts 1).Source}}' "$DEBUG_DOCKER_SYNC"

If you do not see the path to your directory, this means your mount location is conflicting. To fix this issue:

	Bring your containers down

	Perform docker-sync clean

	Bring your containers back up again.

Advanced troubleshooting for native_osx strategy

Note

This document is a work in progress. Each time you encounter the scenario below, please revisit this document and report any new findings [https://github.com/EugenMayer/docker-sync/issues/410].

The osx_native sync strategy is the fastest sync strategy for docker-sync under Docker4Mac. Unfortunately a recurring issue has emerged where the sync strategy stops functioning [https://github.com/EugenMayer/docker-sync/issues/410]. This page is to guide you on how to debug this situation to provide information so that it can be solved.

Step 1 - Prepare: Identify the docker-sync container involved

First, open your docker-sync.yml file and find the sync that has to do with the code that appears to be failing to sync.

For example, if you have two docker-sync mounts like so:

syncs:
 default-sync:
 src: './default-data/'
 fullexample-sync:
 src: './data1'

And your file that is not updating is under default-data, then your sync name is default-sync.

Run this in your terminal (substitute in your sync name) for use in the remaining steps: DEBUG_DOCKER_SYNC='default-sync'

Step 2 - Prepare: A file path to check

Next we’re going to assign a file path to a variable for use in the following steps.

	Change into your sync directory (in the example cd default-data/)

	Prepare the relative path to your file that does not appear to be updating upon save, example some-dir/another-dir/my-file.ext

	Run the following command with your path substituted in: DEBUG_DOCKER_FILE='some-dir/another-dir/my-file.ext'

Step 3 - Reproduction: Verify your host mount works (host_sync)

Run this to verify that your file changes have been synced by OSXFS to the sync-container

diff -q "$DEBUG_DOCKER_FILE" <(docker exec "$DEBUG_DOCKER_SYNC" cat "/host_sync/$DEBUG_DOCKER_FILE")

Usually this should never get broken at all, if it does, you see one of the following messages, the so called host_sync is broken:

Files some-dir/another-dir/my-file.ext and /dev/fd/63 differ
diff: some-dir/another-dir/my-file.ext: No such file or directory

Step 4 - Reproduction: Verify your changes have been sync by unison (app_sync)

Run this to verify that the changes have been sync from host_sync to app_sync on the container (using unison)

diff -q "$DEBUG_DOCKER_FILE" <(docker exec "$DEBUG_DOCKER_SYNC" cat "/app_sync/$DEBUG_DOCKER_FILE")

If you see a message one of the messages, this so called app_sync is broken:

Files some-dir/another-dir/my-file.ext and /dev/fd/63 differ
diff: some-dir/another-dir/my-file.ext: No such file or directory

If you do not see a message like one of these, then the issue you are encountering is not related to a sync failure and is probably something like caching or some other issue in your application stack, not docker-sync.

Step 5 - Reproduction: Unison log

If one of the upper errors occurred, please include the unison logs:

docker exec "$DEBUG_DOCKER_SYNC" tail -n70 /tmp/unison.log

And paste those on Hastebin [https://hastebin.com] and include the link in your report

Step 6 - Reproduction: Ensure you have no conflicts

Put that into your problematic sync container docker-sync.yml config:

sync_args: "-copyonconflict -debug verbose"

Restart the stack

docker-sync-stack clean
docker-sync-stack start

Now do the file test above and see, if next to the file, in host_sync or app_sync a conflict file is created, its called something like conflict

Also then include the log

docker exec "$DEBUG_DOCKER_SYNC" tail -n70 /tmp/unison.log

And paste those on Hastebin [https://hastebin.com] and include the link in your report

Step 7 - Report the issue

If the issue still persists, post the results from the above steps in a new Github issue (see an example at issue #410)_.

Development & testing

Development

You do not really need a lot to start developing.

	A local Ruby >= 2.0

git clone https://github.com/eugenmayer/docker-sync
cd docker-sync
bundle install
gem uninstall -a docker-sync

Important: To properly develop, uninstall docker-sync as a gem so it is not used during the runs:
gem uninstall -a docker-sync.

Now you can:

cd example
thor sync:start

or

thor stack:start

So you see, what is separated in to binaries in production docker-sync and docker-sync-stack is bundled under one namespace here, but prefixed.

General layout

Check libs folder.

	SyncManager [https://github.com/EugenMayer/docker-sync/blob/master/lib/docker_sync/sync_manager.rb]: Main orchestrator to initialise the config, bootstrap ALL sync-endpoint-processes and start/stop those in threads

	SyncProcess [https://github.com/EugenMayer/docker-sync/blob/master/lib/docker_sync/sync_process.rb]: Does orchestrate/a manage ONE sync-endpoint. Selects the strategy on base of the config

	Strategies: See below, specific implementations how to either sync or watch for changes.

Sync strategies

	To add a new strategy for sync, copy one of those https://github.com/EugenMayer/docker-sync/tree/master/lib/docker_sync/sync_strategy here as your

	Implement the general commands as they are implemented for rsync/unison - yes we do not have an strategy interface and no abstract class, since its ruby .. and well :)

	Add your strategy here: https://github.com/EugenMayer/docker-sync/blob/master/lib/docker_sync/sync_process.rb#L31

Thats it.

Watch strategies

	To add a new strategy for watch, copy one of those https://github.com/EugenMayer/docker-sync/tree/master/lib/docker_sync/watch_strategy here as your

	Implement the general commands as they are implemented for fswatch

	Add your strategy here: https://github.com/EugenMayer/docker-sync/blob/master/lib/docker_sync/sync_process.rb#L46

Thats it.

Testing

Automated integration tests

bundle install
bundle exec rspec --format=documentation

Manual Tests (sync and performance)

Tip

You can also use the docker-sync-boilerplate [https://github.com/EugenMayer/docker-sync-boilerplate].

Pull this repo and then

cd docker-sync/example
thor stack:start

Open a new shell and run

cd docker-sync/example
echo "NEWVALUE" >> data1/somefile.txt
echo "NOTTHEOTHER" >> data2/somefile.txt

Check the docker-compose logs and you see that the files are updated.

Performance write test:

docker exec -i -t fullexample_app time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000

Performance

Performance

OSX

	Setup

	Native
(out of the box)

	Docker-Sync

	Unison

	native_osx

	Docker Toolbox - VMware Fusion

	12.31s

	0.24s

	n/a (issue [https://github.com/EugenMayer/docker-sync/issues/346])

	Docker Toolbox - VirtualBox

	3.37s

	0.26s

	n/a (issue [https://github.com/EugenMayer/docker-sync/issues/346])

	Docker for Mac

	20.55s

	0.36s

	0.28s

	Docker for Mac Edge

	18.12s

	0.27s

	0.19s

	Docker for Mac Edge + APFS

	18.15s

	0.38s

	0.37s

	Docker for Mac Edge :cached [https://blog.docker.com/2017/05/user-guided-caching-in-docker-for-mac/]

	17.65s

	0.21s

	0.22s

Setup and details below at Performance Tests 2017.

Windows

Coming soon.

Linux

Coming soon.

Performance Tests 2017

Results

Test: writing 100MB

	Setup

	Native
(out of the box)

	Docker-Sync

	Unison

	native_osx

	Docker Toolbox - VMware Fusion

	8.70s

	0.22s

	n/a (issue [https://github.com/EugenMayer/docker-sync/issues/346])

	Docker Toolbox - VirtualBox

	3.37s

	0.26s

	n/a (issue [https://github.com/EugenMayer/docker-sync/issues/346])

	Docker for Mac

	18.85s

	0.24s

	0.28s

	Docker for Mac Edge

	18.12s

	0.27s

	0.19s

	Docker for Mac Edge :cached [https://blog.docker.com/2017/05/user-guided-caching-in-docker-for-mac/]

	17.65s

	0.21s

	0.22s

Those below is how the tests were made and how to reproduce them:

Setup

Test-hardware

	i76600u

	16GB

	SSD

	Sierra

Docker Toolbox VMware Fusion machine:

docker-machine create --driver vmwarefusion --vmwarefusion-cpu-count 2 --vmwarefusion-disk-size 50000 --vmwarefusion-memory-size 8000 default

Docker for Mac

	8GB

	CPUs

Native implementations

Those tests run without docker-sync or anything, just plain what you get out of the box.

VirtualBox - Native

docker-machine create --driver virtualbox --virtualbox-cpu-count 2 --virtualbox-disk-size 20000 --virtualbox-memory "8000" vbox

docker run -it -v /Users/em/test:/var/www alpine time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 3.37s
user 0m 0.00s
sys 0m 2.09s

3.37s

VMware Fusion - Native

docker run -it -v /Users/em/test:/var/www alpine time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 12.32s
user 0m 0.14s
sys 0m 2.22s

12.31s

Docker for Mac - Native

	8GB Ram

	2 CPUs

docker run -it -v /Users/em/test:/var/www alpine time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 18.85s
user 0m 0.11s
sys 0m 1.06s

20.55s

Docker-sync - Strategy: Native_osx

Get this repo and this boilerplate project

git clone https://github.com/EugenMayer/docker-sync-boilerplate
cd docker-sync-boilerplate/default
docker-sync-stack start

Vmware Fusion

docker exec -it nativeosx_app-unison_1 time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 0.32s
user 0m 0.02s
sys 0m 0.24s

0.32s

Docker for Mac

docker exec -it nativeosx_app-unison_1 time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 0.28s
user 0m 0.02s
sys 0m 0.25s

0.26s

Docker-Sync - Strategy: Unison

Get this repo and this boilerplate project

git clone https://github.com/EugenMayer/docker-sync-boilerplate
cd docker-sync-boilerplate/unison
docker-sync-stack start

VirtualBox

docker exec -it unison_app-unison_1 time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 0.26s
user 0m 0.00s
sys 0m 0.23s

VMware Fusion

docker exec -it unison_app-unison_1 time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 0.24s
user 0m 0.01s
sys 0m 0.23s

Docker for Mac

docker exec -it unison_app-unison_1 time dd if=/dev/zero of=/var/www/test.dat bs=1024 count=100000
100000+0 records in
100000+0 records out
real 0m 0.24s
user 0m 0.04s
sys 0m 0.16s

0.36s

Alternatives

This is a list of alternatives grouped by technology. Feel free to add the missing ones.

Docker native

Transparent, consistent, dual-sided (host -> container, container -> host) synchronization. Performance is here a trade-off for consistency. Can be 2-100 times slower than nfs and even more as compared with rsync.

	docker-toolbox [https://www.docker.com/products/docker-toolbox]: virtualBox / fusion VM (horribly slow)

	docker for mac [https://docs.docker.com/docker-for-mac/]: uses osxfs [https://docs.docker.com/docker-for-mac/osxfs/]. See osxfs-caching [https://docs.docker.com/docker-for-mac/osxfs-caching/] for optimization ideas. As of October 2017, they aren’t proven to be effective yet.

OSXFS + unison

Dedicated container mounts a local directory via osxfs and runs Unison to synchronize this mount with a Docker volume.
- docker-magic-sync [https://github.com/mickaelperrin/docker-magic-sync]
- docker-sync [https://docker-sync.io] implements osxfs+unison-based sync when ‘native_osx’ is used as a strategy, being the default since 0.4.x. We use a special technique to achieve better performance, we sync with osxfs but the container still runs at native speed, let’s call it decoupled sync.

Unison

Unison runs both on the host and in a Docker container and synchronizes the macOS directory with a Docker container with Unison. osxfs + unison is a preferred alternative, because it’s simpler and more reliable (bad FSEvents performance).

	docker-sync [https://docker-sync.io] - unison can be used with docker-sync as well as a strategy, just set sync_strategy: unison

	Hodor [https://github.com/gansbrest/hodor] (should be as fast as rsync?)

Tip

You can choose to use Unison with docker-sync by adding sync_strategy: ‘unison’ to a sync-point too

Rsync

Performance: Exactly the performance you would have without shares. Downside: one-way sync.

	docker-sync [https://docker-sync.io] - rsync can be used with docker-sync as well as a strategy, just set sync_strategy: rsync

	docker-dev-osx [https://github.com/brikis98/docker-osx-dev] (rsync, vbox only) - Hint: If you are happy with docker-machine and virtual box, this is a pretty solid alternative. It has been there for ages and is most probably pretty advanced. For me, it was no choice, since neither i want to stick to VBox nor it has support for docker-for-mac

NFS

Performance: In general, at least 3 times slower than rsync, often even more.

	Dinghy [https://github.com/codekitchen/dinghy] (docker-machine only, no docker for mac)

	DLite [https://github.com/nlf/dlite] (docker-machine only, no docker for mac)

	Dusty [http://dusty.gc.com/] (docker-machine only, no docker for mac)

Changelog

Attention

This is legacy/deprecated. Newer changelogs are now part of the releases. See https://github.com/EugenMayer/docker-sync/releases.

0.5.0

Note

This release has no breaking changes, so it is a drop-in-replacement for 0.4.6 without migration.

	Features/Improvements

	
	Integrations tests - huge credits to @michaelbaudino

	FreeBSD support

	print sync time so you can see potential stalls earlier #431

	be able to set max_attempt in global configuration #403

	added support for d4m edge #478

	added diagram to explain how native_osx works [https://github.com/EugenMayer/docker-sync/blob/master/doc/native_osx.png] #465

	upgraded terminal-notifier to 2.0.0 #486

	upgraded docker-compose gem to 1.1 #486

	upgraded thor to 0.20 #486

	Bugfixes:

	
	default ip detection fixed

	fix several typos and docs #432 #409 #404 #396

	fix exceptions thrown #406

	unison mount destination #433

	fix issues with spaces in folder / paths when using unison #426

Special thanks to @michaelbaudino who has done a incredible job

0.4.6

	Fixes:

	
	Fixed Issue introduced with 0.4.5: #367

Nothing else - most probably the last 0.4.x release.

0.4.5

See https://github.com/EugenMayer/docker-sync/milestone/22?closed=1 for the bugfixes

Windows and Linux support now got documented and the documentation has been made more cross-platform.

Mot probably last 0.4.x maintenance release - with 0.5.x a rewrite of the Config/Dependency/Env/Os handling is supercharged by @michaelbaudino. This will help improving the overall quality of the codebase and reduce the clusterfuck when we do cross-platform implementation / splits. Be tensed.

0.4.2

	Implement proper selective sync default: native_osx for d4m and unison for docker-machine, see https://github.com/EugenMayer/docker-sync/issues/350

	When you run –foreground with native_osx you now see the unison logs running in the container, see https://github.com/EugenMayer/docker-sync/issues/341

	Properly pull new unison:hostsync image to fix 0.4.0 bugs

0.4.1

	Fixing issue with sync_userid and native_osx

	Fixing different new and old issues with native_osx and unison / installation and upgrade issues

	More at https://github.com/EugenMayer/docker-sync/issues?q=is%3Aclosed+milestone%3A0.4.1

0.4.0

	New Sync Strategy native_osx. See native_osx (OSX)

	Daemon mode is now the default mode

	No need for unison/unox by default when using native_osx

	Better performance when using native_osx

	Fixed auto-ip guessing

	More at https://github.com/EugenMayer/docker-sync/milestone/17?closed=1

0.3.6

	Finally removed any support of `dest` which has been deprecated since 0.2.x.

	Linux support: docker-sync can now also be used under Linux, were it does a fallback to native volume mounts automatically.

	Introducing auto-guessing of the sync_host_ip for simultaneous usage of the same docker-sync.yml using d4m, docker-toolbox and others. Just set sync_host_ip: 'auto'

	Fixed spaces in ./src lead to issues with unison

	Fixed various issues with the installation of 0.3.x

	Fixed issues with the new configuration model

	Overall making docker-sync more robust and verbose if things are not as intended

	More at https://github.com/EugenMayer/docker-sync/milestone/16?closed=1

0.3.1 - 0.3.5

	Bugfixes

0.3.0

	You can now chose the dotenv file to be used by docker-sync using setting DOCKER_SYNC_ENV_FILE

	The configuration has been rewritten, huge thank you to @ignatiusreza for his effort. This was done to support better scaffolding (inline configuration loading), prepare linux support (or windows cygwin) and to simplify the code / reduce its madness factor

	The precondition checks have been reworked to be simpler and more convinient

	Unox has now been packaged using brew, which makes the installation of unox/unison easier

	Unox has been upgrading to use watchdog instead of macfsevents, which should improve performance

	Several installation issues have been fixed

	Stopping docker-sync now runs synchronously, avoiding accidental race conditions

Thank you a lot for the contributions guys, a lot of team effort in this release!

0.2.3

	Smaller Bugfixes and minor features: https://github.com/EugenMayer/docker-sync/releases/tag/0.2.3

0.2.1

	Smaller bugfixes https://github.com/EugenMayer/docker-sync/milestone/15?closed=1

0.2.0

	You can now start docker-sync in daemon mode docker-sync-daemon. See Daemon mode.

	The default sync strategy is now unison, no longer rsync. Check Upgrade.

	Unison sync now starts slightly faster

	New default setting for --prefer: --prefer <src> --copyonconflict. Check Upgrade.

	Detection of macfsevents installation including some edge cases does properly work now #243 [https://github.com/EugenMayer/docker-sync/issues/243].

	You can now run docker-sync start --version to see your version

	You can now use spaces in the src/dest path #211 [https://github.com/EugenMayer/docker-sync/issues/211].

	unison:onesideded sync has been entirely removed. Check Upgrade.

	sync_user option has been removed (use sync_userid only), since it only spread confusion. Check Upgrade.

	Better way of mounting sync-volumes. Check Upgrade.

	sync_exclude ‘type’ for unison is now Name, not Path by default. Check Upgrade.

	You can now use environment variables in your docker-sync.yml using dotenv. See Environment variables support.

	unison using --testserver now to avoid startup issues and also speedup the startup

	Check for updates only for the actually strategy picked, not all

	Add support for --abort-on-container-exit for docker-compose #163 [https://github.com/EugenMayer/docker-sync/issues/163].

	To share more code and features between the rsync / unison images, we aligned those images to share the same codebase, thus they have been renamed. The ENV variables are changed and some things you should not even notice, since it is all handled by docker-sync. Check Upgrade.

	Fix dynamic port detection with unison / make it more robust #247 [https://github.com/EugenMayer/docker-sync/issues/247].

	New and more robust unison/rsync images

0.1.2

	Adjustments and bugfixes

	Full changelog at: https://github.com/EugenMayer/docker-sync/releases/tag/0.1.2

0.1.1

	Small bugfixes

0.1.0

	Unison-Unox strategy for transparent 2-way sync introduced.

	Full changelog at: https://github.com/EugenMayer/docker-sync/releases/tag/0.1.0

0.0.15

	Notifications, cli mode

	cli-mode selection https://github.com/EugenMayer/docker-sync/pull/66

	Notifications on sync https://github.com/EugenMayer/docker-sync/pull/63, thank you midN [https://github.com/midN]

0.0.14

	Welcome unison-dualside for real 2-way-sync

	unison-dualside strategy introduced for real 2 way syncing, thank you mickaelperrin [https://github.com/mickaelperrin]. See Sync strategies.

	New image for rsync [https://github.com/EugenMayer/docker-unison] based on alpine (10MB), thank you Duske [https://github.com/Duske].

	Optimize fswatch to watch only useful events (better performance), thank you mickaelperrin [https://github.com/mickaelperrin]

	Different fixes with filepaths, symlinks and some minors

	Detailed list at https://github.com/EugenMayer/docker-sync/milestone/5?closed=1

0.0.13

	docker-compose-dev.yml make docker-compose.yml portable

	By moving all changes initially made to your docker-compose.yml into docker-compose-dev.yml, your production docker-compose.yml stays portable #41 [https://github.com/EugenMayer/docker-sync/issues/41]

	Fixing a bug when docker-sync / docker-sync-stack has been symlinked #44 [https://github.com/EugenMayer/docker-sync/issues/44] by mickaelperrin [https://github.com/mickaelperrin]

0.0.12

	Unison slim image, docker-compose path and fswatch disabling

	You can no configure were you docker-compose file is located at. See Configuration.

	You can now disable the filewatcher using watch_strategy. See Configuration.

	docker-compose gem is now part of the gem

	gem / lib was re-layouted to fit the library usage better

	tons of requires have been fixed for the script usage. See Scripting.

	A alpine based, slim unison image was created by onnimonni [https://github.com/onnimonni]. Thank you!

	You can now customize which unison/rsync image you want to use (experts only please!)

0.0.11

	docker-sync-stack is here

	You can now start sync and docker-compose in one go - See Sync stack commands (docker-sync-stack).

	rsync image is now checked for update ability to avoid issues with outdated images

0.0.10

	Yanked, broken release

0.0.9

	Adresses further unison issues, minor features

	Missing stdout pipe and wrong color, thank you @mickaelperrin

	More verbose outputs on unison runs with verbose,, thank you @mickaelperrin

	Adding update-checker to ensure, that you run the newest docker-sync

0.0.8

	Fix unison startup

	Fixed issue during unison startup

0.0.7

	** Convenience / Bugfixes**

	Add the possibility to map user/group on sync

	Fixed container-re-usage issue

	Add preconditions to properly detect if fswatch, unison, docker, and others are in proper state

	Better log output

	Do no longer enforce verbose flag

	Remove colorize

	Be less verbose in normal mode

	Fixed source code mapping when using test

	Renamed test to example

0.0.6

	Critical issue in sync

	Fixing critical issue where sync has been called using the old sync:sync syntax - not syncing at all

0.0.5

	Added unison support

Index

 _static/minus.png

_static/native_osx.png
Configure a sync container in docker-sync.ymi .

synes.
ny_app-sync:

sync_strategy: native osx

/Gsezs/myse1t/my_app/szc

MacOS X

2

Your application

Urison local
sync daemon
L
@ Your application container (e.g. my_app)
-

(e.g. Symfony, Rails, Webpack, ...

Deciare a volume in docker-compose.ymi :

volume:

\ 14 s HvperKit

- my_app-sync: /app:nocopy

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 docker-sync

_static/ajax-loader.gif

_images/native_osx.png
Configure a sync container in docker-sync.ymi .

synes.
ny_app-sync:

sync_strategy: native osx

/Gsezs/myse1t/my_app/szc

MacOS X

2

Your application

Urison local
sync daemon
L
@ Your application container (e.g. my_app)
-

(e.g. Symfony, Rails, Webpack, ...

Deciare a volume in docker-compose.ymi :

volume:

\ 14 s HvperKit

- my_app-sync: /app:nocopy

